侵权投诉
订阅
纠错
加入自媒体

更快、更高效的电池充电动态电源管理方案

2013-12-21 11:07
安娜PARKER
关注

  基于输入电压的DPM

  如果一个第三方电源插入系统,而系统却无法识别其电池限制,则难以根据输入电流限制来使用DPM。这种情况下,我们可以使用基于输入电压的DPM(图2)。电阻分压器R1和R2用于检测输入电压,然后馈给输入电压调节环路的误差放大器。同样,如果系统负载增加,致使输入电流超出适配器的电流限制,则适配器电压开始下降,并最终达到预设的最小输入电压。输入电压调节环路被激活,以让输入电压维持在预设水平。通过自动降低充电电流以便让来自输入功率电源的总电流达到其最大值(电源不崩溃),可以完成这项工作。因此,系统可以追踪适配器的最大输入电流。设计输入电压调节的目的是,让电压保持足够高,以便对电池完全充电。例如,可把电压设置为4.35V左右,以对一块单节锂离子电池组完全充电。

更快、更高效的电池充电动态电源管理方案

图2 基于输入电压的DPM

  电池补充供电模式

  基于输入电流或者输入电压的DPM可在电源不崩溃的情况下从适配器获得最大功率。对于一些便携式设备而言,例如:智能电话和平板电脑等,系统负载通常是动态的,并且有高脉冲电流。即使是充电电流已降至零,如果出现脉冲电流的系统的峰值功率高于输入功率怎么办?如果不主动控制,则输入功率电源可能会崩溃。

  一种解决方案是,增加适配器的额定功率,但这会增加适配器的体积和成本。另一种解决方案是,开启MOSFET Q4对电池放电而非充电,从而暂时性地为系统提供更多的功率。组合运用DPM控制和电池补充供电模式,可优化适配器,以提供平均功率而非最大峰值系统功率,从而降低成本,并实现最小的解决方案尺寸。

  提高系统性能设计考虑

  如平板电脑和智能电话等便携式设备,均要求实现瞬时开机功能,从而提供良好的用户体验。这就意味着,不管电池是完全充电还是深度放电,插入适配器时系统都要瞬时开启。

  例如,我们假设,系统使用一块单节锂离子电池,如图1和2所示。如果在没有MOSFET Q4的情况下,电池直接连接至系统,则系统总线电压(VBUS)与电池电压一样。电压小于3V的一块深度放电电池,可能会阻止系统开启。用户可能不得不等待电池充电至3.4V以后才能开启系统。为了支持瞬时开启功能,我们添加了MOSFET Q4,以便工作在线性模式下,实现对深度放电电池充电的同时维持最小系统工作电压。最小系统电压通过开关式转换器调节,而Q4的充电电流则通过一个线性控制环路来调节。一旦电池电压达到最小系统电压,MOSFET Q4便完全开启。它的充电电流通过同步降压转换器的占空比来调节。所以,系统电压始终维持在最小系统工作电压和最大电池电压之间,以为系统供电。

  在一个5V的USB充电系统中,电源和电池之间的所有串行电阻都会影响充电效率。充电通路的电阻由FET Q1、Q2及Q4的“导通”电阻以及USB线缆约250 m?的电阻共同组成。如果线缆电压下降,充电器输入电压很少能达到4.5V。因此,设计一种FET“导通”电阻最低的充电器,可以最小化充电时间,这一点至关重要。图3比较了使用 TI bq24190 USB/适配器充电器设计和80 m?充电通路额外电阻替代设计的充电时间。我们可以看到,相比另一种设计,由于输入电压达到4.5V,bq24190设计的充电时间缩短了20%。

更快、更高效的电池充电动态电源管理方案

图3 充电通路中高“导通”电阻的影响

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

电源 猎头职位 更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号