运放电路的参考设计及应用!
我将在实际工作中参考运用到的运放放大器电路推荐给大家;其应用领域已经延伸到汽车电子、通信、消费等各个领域,并将在未来技术方面扮演重要角色。
首先运算放大器其按参数可分为如下几:
通用型运算放大器:
主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。
低温漂型运算放大器:
在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。
高阻型运算放大器:
特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>1GΩ~1TΩ,IB为几皮安到几十皮安。
高速型运算放大器:
主要特点是具有高的转换速率和宽的频率响应。
低功耗型运算放大器:
由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。
高压大功率型运算放大器:运算放大器的输出电压主要受供电电源的限制。
可编程控制运算放大器:
在仪器仪表得使用过程中都会涉及到量程得问题.为了得到固定电压得输出,就必须改变运算放大器得放大倍数。
我们关键的几个关键参数问题:
1.低功耗的需求?
2.低噪声的需求?
3.高精度的需求?(较低的失调电压)
4.高速的需求?(运放的带宽高,跟运放的带宽要求相关)
5.压摆率的需求?(1V/uS以上)跟运放的带宽相关,速率高—压摆率高!
6.几个通道的需求?(单通道或双通道)
7.是否需要轨对轨?(信号的失真性小,信号可满摆幅输出!)
8.失调电压的需求?(是否5mV以内)
9.通用运放主要指标
GBW在1MHz左右;失调电压 > 5mV;压摆率为1V/?S以上。
Railto Rail概念
A.输入失调电压VOS(input offsetvoltage)输入电压为零时,将输出电压除以电压增益,即为折算到输入端的失调电压。是表征运放内部电路对称性的指标。
说明:失调电压越低,运放性能指标就越高,其内部的对称性指标就越好。
B.压摆率SR(Slew rate)其特征参数数据越高运放的性能也越优越。表征其工作时的响应速度,输出电压的响应速度能快速跟踪输入电压的性能指标。
说明:压摆率越高越好,其输出电压的响应速度会越快。
C.电压/电流噪声eN(@1KHz)(Voltage Noise)其特征参数越大越好。进行运算放大时其背景噪声的干扰会越小。
说明:电压/电流的噪声电压越小越好。其输出放大的背景噪声就越小。有用信号更容易取得。
D.谐波失真THD(total harmonic distortion)其百分数越低越好。表征其输出信号对比输入信号的失真度情况。
说明:THD值越低越好,表明其输出波形的相似度等级。
1、运放在有源滤波中的应用
上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。
该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。其中电阻R280是防止输入悬空,会导致运放输出异常。
滤波最常用的3种二阶有源低通滤波电路为:
巴特沃兹,单调下降,曲线平坦最平滑;
巴特沃兹低通滤波中 用的最多的是赛伦凯乐电路,即仿真的该电路。
一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。
如果该滤波器还有放大功能,要知道该滤波器的增益是多少。
当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。
二阶有源低通滤波电路的通带放大倍数为 1+Rf/R1 ,与一阶低通滤波电路相同;
二阶Sallen-Key低通滤波器
振幅应用图如下:
截止频率为:
注明,m的单位为 欧姆, N 的单位为 u
所以计算得出 截止频率为:
切比雪夫 ,迅速衰减,但通带中有纹波;
贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。
2、运放在电压比较器中的应用
电压比较
上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。
该电路实际上是过零比较器和深度放大电路的结合。
将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。
该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。
3、恒流源电路的设计
如图所示,恒流原理分析过程如下:
U5B(上图中下边的运放)为电压跟随器,故V1=V4;
由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有: V3=V5;
以上等式组合运算得:
当参考电压Vref固定为1.8V时,电阻R30为3.6,电流恒定输出0.5mA。
该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,就是获得的输出电流。
但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。
4、整流电路中的应用
整流电路
上述电路是一个整流电路,将输入的一定频率的脉冲整流成固定的电平电压,再用此电压控制4-20mA电流的输出电流。
该电路功能类似一些DAC功能的接口。
5、热电阻测量电路
热电阻测量电路
上图的电路是典型的热电阻/电偶的测量电路,其测量思路为:将1-10mA的恒流源加于负载,将会在负载上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后将信号送入ADC接口。
该电路应用时,要注意在输入端施加保护,可以并TVS,但要注意节电容对测量精度的影响,当然,如果在一些低成本场合,上述电路图可简化为下电路
热电阻测量简化电路
6、电压跟随器
在运放的使用中,电压跟随器是一种常见的应用,该电路的好处是:一是减小负载对信号源的影响;二是提高信号带负载的能力。
电压跟随器
上图是运用运放实现了电阻分压的功能,首先用电阻获得需要输出的电压,然后用运放对该电压进行跟随,提高其输出能力。
7、单电源的应用
在运放的实际使用,我们一般为了保持运放的频率特性,一般都采用双电源供电,但有的时候在实际使用,我们只有单电源的情况,也能实现运放的正常工作。(电源方案解决专家:华星电源)
首先我们运用运放跟随电路,实现一个VCC/2的分压:
分压电路
当然,如果在要求不是很高的场合,我们可以直接电阻分压,获得+VCC/2,但由于电阻分压的特性所在,其动态的响应速度会非常慢,请谨慎使用.
获得+VCC/2后,我们可以用单电源实现信号放大功能,如下图:
单电源的应用
该电路中 R66=R67//R68, 信号的输出增益G=-R67/R68 。
具体应用如下图,运放为单+5V_AD供电,AD芯片的电压是3.3V(基准电压芯片REF3033得到),该3.3V再电阻分压和经过运放跟随后得到1.65V,给到运放的同相输入端
单电源差分输入并放大的应用
附:运放的应用要点
总结:
上述的电路结构运用范围广;如果了解电路工作原理对于我们无论多复杂的结构电路都能有清晰的认识。
图片新闻
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论