电子产品&设备开关电源系统:EMI传导输入滤波器的设计理论
杂散参数影响耦合通道的特性
进行上图的分析:在EMI传导骚扰频段<30MHz,多数开关电源系统骚扰的耦合通道我一般用电路网络路径图来分析的。但是,在开关电源中的任何一个实际元器件,如电阻器、电容器、电感器乃至开关管、二极管都包含有杂散参数,且研究的频带愈宽,等值电路的阶次愈高;因此,包括各元器件杂散参数和元器件间的耦合在内的开关电源的等效电路将复杂得多。
注意:在高频时,杂散参数对耦合通道的特性影响很大,分布电容的存在成为电磁骚扰的通道。还有,在开关管功率较大时,开关管一般都需加上散热片,散热片与开关管之间的分布电容在高频时不能忽略,它能形成面向空间的辐射骚扰源和电源线传导的共模骚扰源。
针对对上面的问题:我们的第一想法是要插入滤波器设计;所以对开关电源系统传导的高效设计实际是我们插入滤波器的设计!
注意设计关键思路:在输入端加滤波器,滤波器阻抗应与电源阻抗失配,失配越厉害,实现的衰减越理想,得到的插入损耗特性就越好。也就是说,如果噪音源内阻是低阻抗的,则与之对接的EMI滤波器的输入阻抗应该是高阻抗(如电感量很大的串联电感);如果噪音源内阻是高阻抗的,则EMI滤波器的输入阻抗应该是低阻抗(如容量大的并联电容)。由于线路阻抗的不平衡性,两种分量在传输中会互相转变,情况也变得复杂。
对于<75W电子产品&设备的开关电源系统EMI滤波器的测试推荐如下结构:
输入滤波器的电路设计原理图
测试输入滤波电路能达到10dB设计裕量(采用模拟负载测试)
我们通用的工业及住宅类产品的EMI标准如下:
传导骚扰的测试频率范围为0.15~30MHz,限值要求如下表:
在0.15~1MHz的频率范围内,骚扰主要以差模的形式存在,
在1~10MHz的频率范围内,骚扰的形式是差模和共模共存,
在10MHz以上,骚扰的形式主要以共模为主。
进行机理分析:
差模骚扰的产生主要是由于开关管工作在开关状态,当开关管开通时,流过电源线的电流会逐渐上升,开关管关断时电流突变为零,因此,流过电源线的电流为高频的三角脉动电流,含有丰富的高频谐波分量,随着频率的升高,该谐波分量的幅度越来越小,因此差模骚扰随频率的升高而降低,共模则相反随着频率的升高器件体之间的分布电容变得越来越关键;小的共模电流都能产生大的电磁干扰。
滤波器的设计:通过上面的分析,了解产品的干扰特性和输入阻抗特性后,设计或者选择一个滤波器就变得简单了。如果使用一个现成的滤波器,可以调用过去积累的滤波器数据库,比对滤波器参数,找到一个合适的滤波器。如果没有合适的或者想专门设计一个专用滤波器,可以借助专用的滤波器设计软件。
我自己设计的公式计算软件的机理:
1. 一般开关电源的噪声成分约为1~10MHZ间所以EMI滤波器要在1-10MHZ的插入损耗要尽量好。
2. 滤波器的CM/DM滤波器谐振频率在10KHZ-50KHZ为好:注意小于开关频率;
3. 理论上电感量越高对EMI抑制效果越好,但过高的电感将使截止频率更低,而实际的滤波器只能做到一定宽带,也就使高频噪声的抑制效果变差
举例说明:我将一只20mH的电感进行频率-电感& 频率-阻抗 分析;
频率-电感曲线FREQUENCY—INDUCTANCE CURVE:
频率---阻抗曲线FREQUENCY—IMPEDANCE CURVE:
注意:
电感量愈高,则绕线匝数愈多,铁氧体磁芯ui越高,如此将造成低频阻抗增加(直流阻抗变大)。匝数增加使分布电容也随之增大,使高频电流全部经此电容流通。过高的ui使CORE极易饱和,根据我多年的设计经验对于铁氧体材料ui=10K是比较理想的。
将输入滤波器进行等效如下:
进行EMI的共模和差模等效如下:
计算谐振频率(滤波器的截止频率):
对于<75W开关电源系统EMI输入滤波器计算结果如下:
通过测试的滤波器的EMI数据与理论的EXCEL的原理计算参数数据是吻合的。因此就可以类推各种不同应用条件下的EMI滤波器的设计!
图片新闻
最新活动更多
-
即日-12.27点击申报>> 维科杯·OFweek 2024(第三届)储能行业年度评选
-
企业参编中立即参编>> 前沿洞察·2025中国新型储能应用蓝皮书
-
即日-12.30点击申报>> 【限时免费】OFweek 2025储能行业榜单
-
限时免费点击下载>> 2024储能产业抢占制高点发展蓝皮书
-
精彩回顾立即查看>> 【限时福利】泰科电子连接器现货选型,上天猫旗舰店就“购”了
-
精彩回顾立即查看>> 2024(第五届)全球数字经济产业大会暨展览会
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论