-
市值超越比亚迪后,宁德时代还有硬仗要打
宁王的地位依然很稳,但仗却越来越难打了。 采写/老谢、天南 编辑/万天南 最近,长城汽车董事长魏建军接受采访时警示,汽车产业已出现类似“恒大”的潜在风险,只不过没爆而已
-
-
-
锂电池正极露箔和负极露箔哪个对电芯的危害更大?
正极露箔与负极露箔是电芯产线极片段的常见异常。正极露箔和负极露箔哪个对电芯的危害更大呢?总的来说,正极露箔的危害更大。今天不言分别从正负极露箔后在电芯中的反应机理来分析对比露箔对电芯的影响。
-
为什么锂电池正极辊压需要配置IHA,负极辊压却不用?
在锂电池的生产设备中,正极辊压需要配置IHA(电磁脉冲加热),而负极却不用。本文简单总结了这种设备选型方案的原因。1. 材料特性差异正极铝箔特性:正极铝箔硬度高、延展性差,辊压时料区与留白区延展差异大
锂电池正极辊压 2025-05-29 -
锂电池辊压机弯缸的作用是什么?
辊压机弯缸目前已经是锂电池产线的常见设备配置了。它的作用是通过施加反向预弯力,产生反向弯矩挠度变形,从而补偿轧辊在辊压过程中因轧制力产生的挠曲变形,改善极片横向厚度一致性。
锂电池辊压机弯缸 2025-05-29

动力电池这一技术产业化,提速
文丨泰罗5月27日,固态电池概念出现异动,鹏辉能源、金龙羽、灵鸽科技、德尔股份、南都电源、领湃科技等都在发力。日前,中国汽车工程学会正式发布了《全固态电池判定方法》,该标准首次明确了“全固态电池”定义,并规范测试方法,为技术产业化铺路
中国新能源领导者,为何开始强推换电?
换电不再是简单的补能方式之争,而是基础能源网络的重要一环。 正文 最近宁德时代在港股上市敲钟时,董事长、CEO曾毓群又给资本市场讲了个新故事——不过这次的主角不是电池,而是换电

高效价值被关注,大圆柱电池又风生水起
前言:曾在动力电池领域略显沉寂的大圆柱电池,近来又重回行业焦点,掀起阵阵波澜。技术优势到市场前景,从应用场景到面临挑战,大圆柱电池正经历着全方位的审视与探索。 作者 | 方文三图片来源&n

逆势狂飙!光伏“逆变器之王”,一季度豪赚38亿
光伏行业的低迷,难掩阳光电源的优秀。 行业的寒冬,并未对这家“逆变器之王”的业绩造成多大的影响。 此前,阳光电源披露了2024年财报以及2025年一季度财报,年报显示,20

固态电池,又一次站在聚光灯下?
文丨泰罗近段时间,多家国产厂商公布了固态电池的量产时间和技术进展。作为公认的下一代电池技术,固态电池再一次站在了聚光灯下。目前液体锂电池主要有磷酸铁锂和三元锂两种。磷酸铁锂的能量密度是150-210W

集体涨停,固态电池又有重大突破
文丨泰罗固态电池,又有重大突破。5月21日,国轩高科、领湃科技、金龙羽等涨停,上海洗霸、南都电源、当升科技、宁德时代等跟涨。据央视新闻报道,中科院团队突破固态电池短路难题,研究成果登顶国际顶刊。目前液体锂电池主要有磷酸铁锂和三元锂两种
固态电池:2027年量产在望,但普及仍需跨越三重山
当前,固态电池作为“下一代动力电池”的代表,正站在实验室研发与产业化落地的临界点。从技术进展看,全球企业已进入量产竞速阶段。国内龙头宁德时代、比亚迪计划2027年小批量生产硫化物或氧化物全固态电池,国轩高科等企业也启动装车验证;国际巨头如丰田、日产、三星SDI同样将2027年定为量产节点

Tower Semiconductor 2025年Q1财报:多元驱动下的增长路径
芝能智芯出品 Tower Semiconductor在2025年第一季度展现出稳健的增长态势,营收达3.58亿美元,同比增长9.5%,净利润保持在4000万美元的健康水平。 随着射频基础设施、移动

探秘锂离子电池---全容VS虚容 (二)
应用场景与选择逻辑(一)全容工艺:高端场景必备电动车与储能系统在电动车领域,续航里程是消费者最为关注的指标之一,精准的续航估算至关重要。全容工艺的电芯能够提供真实可靠的容量数据,使得车辆的电池管理系统(BMS)可以精确地控制充放电策略,从而实现更准确的续航显示和更高效的能源利用

中国动力电池月报|2025年4月:产业持续高增,结构分化显现
芝能科技出品 2025年4月,中国动力与其他电池市场延续增长势头,产销同比增幅显著,出口继续扩张。 但在增长表象下,装车量环比下滑、三元电池份额持续萎缩,揭示产业链内部正在经历技术路径与市场结构的深度调整


LG新能源2025年一季度财报:降本增效、扭亏为盈
芝能科技出品LG新能源发布2025年第一季度财报,营收6.3万亿韩元,同比增长2.2%,营业利润3,750亿韩元,扭亏为盈,包含4,580亿韩元IRA税收抵免。面对整车企业保守库存策略和全球政策变动,通过成本控制、北美产能优化及新市场开拓实现盈利

探秘锂离子电池---虚容VS全容工艺
一、核心定义与本质差异(一)全容工艺:精准标定真实容量全容工艺就像是给锂离子电芯进行一场严格的 “体能测试”。在锂离子电芯生产的后段分容环节,会通过完整的充放电循环,通常是以 0.5C 恒流充电至截止电压,再以相同电流放电至截止电压

探秘锂离子电池---边电压异常影响
边电压异常对电芯的影响性能折损边电压异常会直接导致电芯的性能大打折扣。首先,电池容量会明显下降,就好比一个原本能装 1 升水的杯子,因为边电压异常,现在只能装 800 毫升甚至更少 。这是因为边电压异

探秘锂离子电池---边电压异常实例剖析
案例一:某型号电池电压过高问题某知名锂电厂:一批新生产的某型号电池在检测过程中出现了部分电池在满电静置后,单串或几串电压明显偏高,而其他单体电压正常。技术人员首先怀疑是电压采集设备出现了故障,导致测量数据不准确
钠电池“钠么厉害”?揭秘聚阴离子化合物
聚阴离子化合物是钠离子电池正极材料的核心成员,由四面体型阴离子单元(如磷酸根PO、硫酸根SO)与过渡金属多面体通过强共价键构成三维网络结构。其原理在于:阴离子基团(如P-O键)通过“诱导效应”提升过渡金属的氧化还原电位,从而拉高电池工作电压(可达3.4V以上)

三星SDI危机!业绩下滑,站在动力电池战略的十字路口
芝能科技出品 2025年第一季度,三星SDI录得34%的营收同比下滑和连续两个季度的营业亏损,在动力电池领域的严峻挑战。 随着市场对高能量密度产品如4680圆柱电池的需求持续升温,以及新能源汽车市场竞争的白热化,三星SDI正面临产品策略、产能布局和成本控制多重压力
宁王“钠新”来袭,钠离子储能“上位”
从落入低谷到重回牌桌,钠离子储能正从“备胎”走向台前。文 / NE-SALON新能荟 4月21日,宁德时代推出首个钠离子电池品牌——“钠新”,并推出三款动力电池产品,钠新乘用车动力电池、骁遥双核电池、第二代神行超充电池;以及一款蓄电池产品,钠新24V重卡启驻一体蓄电池
极片NMP残留如何影响电芯性能?
当NMP残留突破安全阈值,极片表面悄然发生的副反应将引发连锁危机——从SEI膜结构破坏到电解液分解产酸,从粘结剂异常迁移到锂离子传输受阻。本文基于产线实测案例,深度解析干燥梯度控制、环境湿度监测等五大工艺管控方案,破解溶剂残留对电芯性能的致命威胁

锂电常见异常实例分析---涂布气泡
一、涂布气泡对电芯性能的双重威胁(一)显著降低电池核心性能某锂电厂实测数据显示,当负极片气泡比例达到 40% 时,电池在 500 次循环后的容量保持率较无气泡电池下降 15% 以上,且放电平台明显衰减,说明气泡区域的锂离子嵌入 / 脱出效率显著降低,严重影响电池长期使用性能
隔膜涂陶瓷的作用是什么?隔膜的陶瓷对正极还是对负极分别有什么优缺点?
之前发表了一篇文章(锂电池隔膜陶瓷层要对着正极还是负极?),引起了大家的积极讨论,收获很大。今天特地重新整理了隔膜涂覆陶瓷对正负极片的优缺点与大家讨论。一、隔膜涂陶瓷的作用1.增强热稳定性陶瓷涂层(如AlO、SiO)熔点高,可抑制基膜(PE/PP)在高温下的收缩,降低热失控风险
锂电池中阴极,阳极和正极,负极是怎么对应的?
锂电池中阴极、阳极与正极、负极的对应关系及命名逻辑如下:一、对应关系放电时(电池作为电源工作):正极 = 阴极(发生还原反应,得电子)负极 = 阳极(发生氧化反应,失电子)充电时(电池作为电解池被充电

充电快=伤电池?揭秘快充背后的技术真相!
充电快真的伤电池吗?高电流引发的析锂、寿命缩短、热失控风险确实存在,但通过智能分段充电、材料工艺革新及三电极监控技术,这些隐患正被精准破解。本文将深度解析快充背后的技术攻防战——如何在速度与安全间找到

锂电常见实例分析---涂布划痕
导语涂布划痕就像电池的“隐形杀手”——看似不起眼,却能让电芯内阻飙升、循环寿命腰斩!本文将直击 涂布划痕的4大真凶,并给出产线验证过的 5大根治方案,文末附赠 预防自检清

特斯拉——Cybertruck PCS2 电源转换系统
芝能智芯出品特斯拉Cybertruck的电源转换系统(PCS2)代表了电动汽车电力电子领域的重大突破,其800V/48V架构、单板设计和平面变压器等创新技术,提升了功率密度和效率,还实现了与竞争对手相当的制造成本

半导体技术,背面供电设计进入量产期
芝能智芯出品背面供电(Backside Power Delivery Network, BPDN)作为一项突破性技术,被认为是CMOS缩放的下一阶段驱动力。通过将电源网络从晶圆正面转移到背面,显著提升了功率效率、开关速度和信号布线资源利用率,同时降低了电压降和电源噪声

惠州首富卖电池,年入40亿
锂电、储能行业的寒冬还未结束。逆周期扩张的企业,已遭到了“惩罚”。 随着拐点将至,行业的头部企业有望率先跑完“长夜”。 4月18日,锂电龙头企业亿纬

通快霍廷格领跑,盘点射频电源领域实力TOP 5
“芯”原创 — NO.61 射频电源采购市场空间仍颇为客观。 作者 | 阿牛 出品 I 芯潮 IC ID I xi

锂电异常实例分析---注液溢液
电芯化成注液溢液的原因主要有以下几点:注液量过多如果在注液过程中,注入的电解液量超过了电芯的设计容量,过多的电解液在化成过程中就容易溢出。这可能是由于注液设备的精度问题,或者是操作人员对注液量的控制不当导致的
锂电池焊后铝壳内凹变形的原因分析和改善措施
方形铝壳电池顶盖周边焊工序经常会出现焊接之后铝壳发生内凹变形,今天做一个简单的分析。问题根源分析铝壳焊接变形主要有下面3点:热输入不均:焊接热积累导致盖板与壳体熔合区温差收缩差异;材料特性:铝合金线膨胀系数大,焊缝区残余应力释放引发塑性应变;夹具压紧不足:壳盖间隙或台阶值超差导致焊后收缩不协调

锂电池容量为何突然跳水?六大失效模式深度解析
锂电池容量跳水的主要原因包括以下方面:1.负极界面失效SEI膜动态破坏重组:在循环初期,SEI膜的结构破坏和再生成过程会持续消耗活性锂,导致可逆容量快速下降。锂枝晶析出:在低温、过充或N/P比不足(负极设计容量偏低)时,锂离子在负极表面沉积形成枝晶,后续循环中引发内短路,直接导致容量断崖式下跌

动力电池快充,储能电池要长寿?一文说透两大电池的4层差异链
1. 应用场景不同2. 设计要求与性能指标对比3. 系统集成与制造工艺差异冷却方式动力电池:液冷为主(高速充放电发热量大,需快速散热)。储能电池:自然冷却或风冷(散热压力较小,成本优先)。串并联规模动力电池:多为小模组串联(如100V以内,适配车辆电气系统)

锂电、半固态、固态电池终极对决(二)
一、产业竞争格局:巨头押注与新势力突围车企阵营:技术路线分化在这场电池技术的变革中,车企们纷纷根据自身的战略规划和技术储备,选择了不同的技术路线,形成了多元化的竞争格局。丰田作为汽车行业的巨头,一直以

NXP芯片的新一代12V BMS汽车锂电池方案
芝能智芯出品世平集团推出基于恩智浦多款芯片的12V BMS(电池管理系统)解决方案,以NXP的S32K312 MCU、MC33772C电池控制IC为核心,支持电压、电流、温度监测、SOC估算和被动均衡等关键功能,并达到ASIL-B安全等级标准
最新活动更多 >
-
6月13日立即参评>> 【评选】维科杯·OFweek2025中国工业自动化及数字化评选
-
6月13日立即参评>> 【评选启动】维科杯·OFweek 汽车行业年度评选
-
6月13日立即参评 >> 【评选启动】维科杯·OFweek 人工智能行业年度评选
-
即日-6.18立即报名>> 【在线会议】英飞凌OBC解决方案——解锁未来的钥匙
-
6月19日立即报名>> 【在线研讨会】安世汽车车身照明方案
-
6月20日立即下载>> 【白皮书】精准测量 安全高效——福禄克光伏行业解决方案